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Light-scattering measurements of the correlation length in the isotropic phase of a nematic liquid crystal
reveal a temperature dependence following Landau–de Gennes theory for the isotropic phase with a bare
correlation length smaller than has been measured in other liquid crystals. Similar measurements in a choles-
teric liquid crystal demonstrate that the correlation length in the isotropic phase is larger than typically found
in nematics and that the chirality of the fluctuations in the isotropic phase is slightly higher than the chirality
of the cholesteric phase. Landau–de Gennes theory of the cholesteric phase describes the chirality in the
cholesteric phase well but predicts that the chirality in the isotropic phase is temperature independent, which is
not consistent with the data. There is a discontinuity in the chirality at the cholesteric-isotropic transition of
about 15%, which is less than the predictions of Landau–de Gennes theory but more than the typical specific
volume discontinuity at transitions to the isotropic phase. Except for a mismatch in the discontinuities at the
transition, the chirality data resemble the temperature behavior of variables just below a critical point, in spite
of the fact that this system is far from a critical point.
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I. INTRODUCTION

Advances in the understanding of phase transitions have
highlighted the central role fluctuations play in all but the
most strongly discontinuous transitions. Phase transitions in
thermotropic liquid crystals are an excellent example of this
because the transitions are weakly discontinuous or continu-
ous. In addition, some liquid crystals are chiral, and recent
theoretical and experimental studies have pointed out the
strong effect chirality can have on the nature of a phase
transition. Yet there is limited quantitative information on the
fluctuations near some thermotropic liquid-crystal phase
transitions. For example, one of the most important param-
eters in describing a phase transition is the bare correlation
length, since this is the length scale that is renormalized as
the phase transition is approached. Measurements of the cor-
relation length in the isotropic phase are few, having been
done some time ago and almost exclusively on one nonchiral
systemf1–3g. Yet in many cases theorists must use a value
for the bare correlation length in order to make comparisons
between theory and experiment. Clearly, additional measure-
ments of the bare correlation length, especially in thermotro-
pic systems in which the molecules are quite different from
the ones studied in the past, are necessary. An interesting
recent development is that the measurement of the bare cor-
relation length in a lyotropic chromonic nematic liquid crys-
tal, in which the ordering entities are aggregates of mol-
ecules instead of molecules, has been reportedf4g. The bare
correlation length in this system is three to four times longer
than the measurements in thermotropic nematic systems.

A more important example concerns measurements of
chirality near phase transitions. The long-range orientational

order of cholesteric liquid crystals makes the measurement of
chirality in the cholesteric phase easy. Measurement of the
chirality of the fluctuations in the isotropic phase near the
transition is very difficult. In fact, only one such measure-
ment has been done, and that was performed by Koistenen
and Keyes on a system with a continuous transition from the
isotropic phase to a more ordered isotropic liquid-crystal
phasesBlue Phase IIId f5g. No measurement of the chirality
of the fluctuations in the isotropic phase near the phase tran-
sition to the cholesteric phase has been done, and no theory
specifically describing the chirality across the cholesteric-
isotropic liquid transition has been formulated. Yet chirality
has been the subject of many theoretical effortsf6–15g, and
some understanding of the behavior of chirality on both sides
of this transition should be possible. But at this time a good
understanding is lacking. In fact, when comparing theories of
the isotropic phase to experimental data, the chirality of the
cholesteric phase must be used because the chirality of the
isotropic phase is unknown.

In an effort to check the experimental procedures utilized
in this investigation and to probe the bare correlation length
in a nonchiral system quite different from those studied pre-
viously, light-scattering measurements in the isotropic phase
of p-pentyl-p8-cyanobiphenyls5CBd were performed. These
measurements are difficult because the correlation length is
much less than the wavelength of light in the material. These
results demonstrate that the bare correlation length in this
smaller, polar molecular system is less than in systems com-
posed of larger, nonpolar molecules. An interesting aspect of
these experiments is that the very large electric susceptibility
anisotropy of 5CB produces strong enough light scattering
for the detected intensity to have a contribution from mul-
tiple scattering. This is taken into account by assuming that
single and double scattering are the only contributions that
need to be included in the analysis.

The most significant results concern the measurements of
chirality across the cholesteric-isotropic transition in a mix-
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ture of 35% chiral and 65% racemic S-4-s2-
methylbutyldphenyl-4-decyloxybenzoatesCE6 and CE6Rd.
The chirality increases with temperature in both phases, with
a relatively small discontinuity at the phase transition. This
behavior is similar to what one observes for the specific vol-
ume across a liquid crystal to isotropic liquid transition, but
the discontinuity in the chirality is much greater. The mea-
surements in the isotropic phase follow the predictions of
Landau–de Gennes theory for short range order in the isotro-
pic phase of a chiral system, but in this theory chirality is an
independent parameter with no indication of how it depends
on temperature. The temperature dependence of the chirality
in the cholesteric phase can be understood by modified
mean-field theories of the Landau–de Gennes type, but these
predict that the chirality in the isotropic phase is independent
of temperature while the data indicate otherwise. This dis-
crepancy is not surprising, since chirality is not related in a
direct way to the orientational order parameter used in these
theories. A theory developed for the critical point that occurs
in some chiral liquid-crystal systems agrees with the chirality
measurements in both the cholesteric and isotropic phases
except for the size of the discontinuity, even though these
measurements are from a region of the phase diagram far
from the critical point. But most importantly, these results
present how much change in chirality occurs at the
cholesteric-isotropic transition in a typical system.

II. THEORY

The theory behind light scattering in the isotropic phase
of liquid crystals was worked out some time ago and has
been used in many investigations. A formulation that is gen-
eral enough for both nonchiral and chiral liquid crystals uti-
lizes a scattering Mueller matrix in which the elementskmi jl
depend on the mean-square amplitudes of the fluctuating ba-
sis modes and the scattering anglef16g,

km11l = 2ke0
2lsc2 + 1d2/3 + 2ke0
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2l + ke−2
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wheres andc are the sine and cosine of half the scattering

angleu, respectively. Factors involving the average electric
susceptibility and the phases of the basis modes are not in-
cluded in Eq.s1d because they do not contribute to the scat-
tering intensity. Thekeml are the spherical basis modes of the
electric susceptibility anisotropy tensor in which one mode
with mean-square amplitudeke0

2l describes a uniaxial direc-
tor field, two modes with mean-square amplitudeske1

2l and
ke−1

2 l describe conical spiral director fieldssopposite sensesd,
and two modes with mean-square amplitudeske2

2l and ke−2
2 l

describe planar spiral director fieldssopposite sensesd. The
intensity of scattered light is found by applying the scattering
Mueller matrix to the incident polarization Stokes vector and
then applying the proper Mueller matrix to this result to take
into account the optical elements between the sample and the
detector. For example, if vertically polarized light is incident
on the sample and only vertically polarized light is allowed
to reach the detectorsthe scattering plane is horizontald, then
the intensity at the detector is given by

IVV =
I0

2
skm11l + km22l − 2km12ld

=
I0

2
F8

3
ke0

2l + 4ske2
2l + ke−2

2 ldG , s2d

where I0 is proportional to the incident intensity. If right-
handed circularly polarized light is incident on the sample
and only right-handed circularly polarized light is detected,
then the intensity is given by

IRR =
I0

2
skm11l + 2km14l + km44ld

=
I0

2
F2

3
c4ke0

2l + ss− 1d4ke2
2l + ss+ 1d4ke−2

2 lG . s3d

The mean-square amplitude of the spherical susceptibility
anisotropy modes can be determined using the Landau–de
Gennes real-space expression for short-range order in the
isotropic phase, converting it to momentum space, and then
using the equipartition theorem to describe the energy asso-
ciated with each modef16g. The free-energy density in mo-
mentum space can be written

FV =
1

2
Ao

m
Fa − mbq0q + Sb +

d

6
s4 − m2dDq2Gkem

2 sqdl,

s4d

whereq is the wave vector;m is the index for the five basis
modes;a, b, andd are the coefficients of terms in the real-
space free-energy density; andq0 is another coefficient of the
free-energy density term representing the chirality of the sys-
temsq0=4p /P, whereP is the pitch of the director helixd. q0
is negative for a right-handed helix and positive for a left-
handed helix.A is a proportionality constant. The equiparti-
tion theorem yields an expression for the mean-square am-
plitude of each of the modes
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kem
2 sqdl =

BkBT

a − mbq0q + Fb +
d

6
s4 − m2dGq2

, s5d

wherekB is the Boltzmann constant,T is the absolute tem-
perature, andB is a proportionality constant.

Substituting the expressions for thekmi jl into the intensity
equation and then using the mean-square amplitudes of the
basis modes gives the following relations for the two cases
discussed earlier:
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2
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wherej1
2=b/a andj2

2=d/a are squared correlation lengths.C
andD are proportionality constants, anda=a0sT−T*d, where
a0 is a constant andT* is the temperature at which the non-
chiral fluctuations in the isotropic phase divergesif not inter-
rupted by the first-order phase transitiond. j1 describes the
size of the correlated regions, andj2 is related to how ellip-
tical they are. There is some evidence thatj2,j1f3g, making
it convenient to setj2=0. The scaling of the correlation
length as the transition is approached is then given by

j1 =Î bT*

a0T
*sT − T*d

= j0Î T*

T − T* , s8d

wherej0=Îb/ sa0T
*d is the bare correlation length.

The Landau–de Gennes phenomenological theory of the
nematic liquid-crystal phase can be extended to include
chirality by simply adding terms allowed by symmetry to the
nonchiral free-energy expression. There are several terms
that are good candidates, but knowing which ones are likely
to dominate is difficult to ascertain. Since the results are
qualitatively the same regardless of which terms are added,
one example is given here that has been successful in de-
scribing the chirality of a cholesteric phasef17g. The free
energy of a chiral system can be written

f = 1
3fa0sT − T*d − 3

4bq0
2gS2 − 2

27mS3 + 1
9lS4, s9d

wherea0, b, m, andl are temperature-independent constants,
S is the orientational order parameter, andq0 is the chirality.
Since it is not known how the chirality depends on the order
parameter, both linear and nonlinear dependences are consid-
ered,

q0 = qIs1 + aSbd, s10d

wherea andqI are constants andb equals 1, 2, or 3. For a
given value ofb, the free energy can be minimized as a
function of temperature for any set of parametersT* , a0, b,
m, l, qI, anda. Note that this form ofq0 introduces terms in
the free energy of the formqI

2S2, qI
2Sb+2, andqI

2S2b+2. Note
also thatqI is the temperature-independent chirality of the
isotropic phase. Since the parameters in the free energy are
not known, they must be determined by a fit to experimental
data.

Since this theory is based on an orientational order param-
eter, it can only describe the chirality through its dependence
on the order parameter. This clearly creates problems. For
example, if this theory is fit to experimental data on the
chirality in the cholesteric phase in a helix inversion system,
the prediction of the chirality in the isotropic phase where
the order parameter is zero does not even match the sense of
chirality in the isotropic phaseswhich was all that could be
determined experimentallyd f17g. So rather than treating the
cholesteric and isotropic phases as very different due to a
large change in the order parameter, perhaps a theory that
begins with the idea that the liquid-crystal and isotropic
phases are similarsbecause of the existence of a nearby criti-
cal pointd can better describe how the chirality changes in
crossing this transition even though the system is not near a
critical point. Such a theory was first proposed by Lubensky
and Starkf13g and further generalized and tested by others
f14g.

This theory defines the order parameter as

kfl = kcl − kclc = ks= 3 Qd ·Ql − kclc, s11d

wherekclc is the value ofks=3Qd ·Ql at the critical point
andQ is the thermally fluctuating alignment tensor. Assum-
ing this order parameter obeys the normal scaling relation in
the vicinity of the critical point,kfl must obey a simple
cubic equation involving the two scaling fieldssordering and
nonorderingd. These two scaling fields are assumed to be
linear combinations of the temperature and chiral fraction.
Comparison of this theory with precise heat capacity mea-
surements in the vicinity of a critical point allowed the tem-
perature and chiral fraction dependence of the two scaling
fields to be determined for one chiral-racemic cholesteric
system, thus revealing howkfl varied with temperature at a
fixed chiral fractionf18g. The order parameter is continuous
in the supercritical region, but is discontinuous in passing
through the transition line that ends at the critical point. The
variation of the order parameter with temperature at a fixed
chiral fraction is not symmetric on either side of the transi-
tion. This theory can be applied to other cholesteric systems;
all that needs to be specified is how far below the critical
chiral fraction the system under study is.
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III. EXPERIMENT PROCEDURES AND RESULTS

The first material studied was the nematic liquid crystal
5CB, purchased from BDH Limited and used without addi-
tional purification except filtering through a 0.2mm nylon
filter. The nematic-isotropic phase transition occurs around
308 K, therefore measurements were conducted over a 15 K
range of temperature higher than this value. Measurements
of the intensity of light scattering as a function of scattering
wave vector,q=s4pn/l0dsinsu /2d, wheren is the index of
refraction of the sample, were recorded using a cylindrical
sample vesselsdiameter of 1 cmd and vertical polarizers in
the input beam and in front of the detector. The sample ves-
sel was surrounded by index matching fluid and the incident
25 mW light with l0=488 nm came from an argon-krypton
laser. The temperature was controlled by circulating
temperature-regulated water through a coil in the index-
matching fluid. The alignment of the system was adjusted
until scattering from the index-matching fluid was constant
over the entire range of scattering angles with no sample
vessel present.

It was quickly noted that the data contained an additional
contribution when compared to the light-scattering results
from many other liquid crystals. Because 5CB has a much
larger electric susceptibility anisotropy than typical liquid
crystals, it is likely that the amount of scattering from the
fluctuations is high enough to cause a larger contribution
from multiple scattering effects. To check whether this is the
case or not, a simple calculation of the angular dependence
due to double scattering was performed. This calculation is
made simpler by the approximation that each scattering
event is isotropic, i.e., the angular dependence of the double
scattering contribution comes predominantly from geometric
effects and not from the angular dependence of Eq.s6d. This
approximation is valid since the correlation length is much
less than the wavelength of light used for the scattering. As
can be seen from Fig. 1, for double scattering to be detected,
the first scattering event must occur along the input laser
beam sline AB in Fig. 1d and the second scattering event
must occur along the acceptance beam of the detector optics
sline CD in Fig. 1d. If the point of the first scattering event is
located a distancex from the center of the cylindrical sample

vesselspoint X in Fig. 1d, then the probability of a second
scattering event along lineCD is proportional to the angle
a+b subtended by lineCD at point X. Averaginga+b for
all X on line AB gives a weakly angular-dependent function
with a shallow minimum atu=90°. Changes in the polariza-
tion during the two scattering events do not affect the calcu-
lation, and there should not be a strong change in the scat-
tering volume with angle. Thus double scattering shows up
as a contribution that is almost independent of angle, but
because the measured intensity is multiplied by sinu to com-
pensate for the change in scattering volume for single scat-
tering, the double scattering contribution strongly depends
on angle and peaks at 90°.

The single scattering contribution is given by Eq.s6d with
q0=0. For simplicity,j2 is assumed to be zero, so

IVV =
CT

sT − T*ds1 + j1
2q2d

, s12d

whereC is a new proportionality constant. When a function
containing the expressions for both single and double scat-
tering, each with an adjustable coefficient, is fit to the light-
scattering datasj1 is the only other fitting parameterd, results
as shown in Fig. 2 are obtained. The graph contains the ac-
tual data and fitting result, whereas the inset shows the mag-
nitude of the two contributions as a function of scattering
angle. Note that the contribution from single scattering domi-
nates, but that the small value of the correlation length means
that the majority of the change with scattering angle comes
from the double scattering contribution.

This procedure was performed for 11 different tempera-
tures above the nematic to isotropic phase transition. The
data are graphed in Fig. 3 where the theoretical dependence
of Eq. s8d has been fit to the data. The resulting value for the
bare correlation lengthj0 is 0.40±0.03 nm.

FIG. 1. Geometry for calculating the contribution from double
scattering. The scattering angle isu, the first scattering event occurs
at pointX, and the second scattering event occurs somewhere along
line CD. The probability of double scattering is proportional to the
anglea+b. This angle is then averaged for all points along lineAB
a distancex from the center.

FIG. 2. Scattering intensity as a function of scattering angle for
5CB. The inset shows the contributions from single and double
scattering resulting from the fitting procedure described in the text
that results in a correlation length of 5.00±0.23 nm.
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The second compound studied was a chiral-racemic mix-
ture of CE6 with 35% of the mixture being chiral. This mix-
ture was utilized to allow the chirality to be measured in both
the cholesteric and isotropic phases. The CE6 was also ob-
tained from BDH Limited, and dust was removed with a
0.2 mm filter. The cholesteric-isotropic transition tempera-
ture was about 318 K, and measurements were made over a
range of 5 K above the transition. The same sample vessel
was used and half-wave plates and polarizers were utilized to
produce right circular polarized light from the laser and al-
low only right circular polarized light to enter the detector.
There was no evidence that double scattering needed to be
taken into account for this more weakly scattering system.
From Eq. s7d it is clear that the scattering for CE6 with a
right-handed helix comes mainly from the last term for two
reasons. First, the denominator of the last term is the least
becauseq0 is negative for CE6. Second, for angles greater
than 60° the geometric factors cause the last term to domi-
nate. To a good approximation then, the scattering intensity
under these conditions is

IRR =
Df1 + sinsu/2dg4T

sT − T*df1 − j1
2q0

2 + j1
2sq + q0d2g

. s13d

This relationship predicts that the scattering intensity at
high temperatures where the denominator is very close toT
−T* should vary with scattering angle asf1+sinsu /2dg4. This
was not quite true, indicating either that the combinations of
half-wave plates and polarizers were not acting as perfect
circular polarizers or that a very small amount of multiple
scattering was present. If either of these causes even a small
amount of intensity that varies weakly with scattering angle,
it affects the analysis since the theoretical function does not
depend strongly onq. To overcome this difficulty, the tech-
nique of Ref.f4g was utilized, namely, dividing the data at

each temperature by the data taken at 331.5 K, over 13 K
above the transition. Such a technique effectively eliminates
all artifacts in the data and should yield data with the angular
dependence of Eq.s13d without the f1+sinsu /2dg4 factor.
The result of this procedure is shown for one temperature in
Fig. 4. Plots of the measured chirality and correlation lengths
as a function of temperature are contained in Fig. 5.

In order to compare the chirality of the cholesteric and
isotropic phases, measurements were also performed in the
cholesteric phase. These were straightforward, involving fab-
ricating a samplesthickness=10mmd with the helical axis
aligned perpendicular to the glass surfacessrubbed polyim-
ide surfactantd and measuring the apparent absorption due to
selective reflection in a spectrophotometer. The output of the
spectrophotometer is shown in Fig. 6 with the sample tem-
perature regulated at 317.3 K. The flat-topped peak is due to
selective reflection, and the oscillations are from interference
because of the two parallel glass surfaces of the sample cell.
The midpoint of the selective reflection peak is equal to the
average index of refraction times the pitch. The average in-
dex of refraction was measured in an Abbe refractometer in
the isotropic phase just above the transition. This measure-
ment was for 589 nm light, but the refractometer also mea-
sured the dispersion so the index at the longer wavelengths
of the selective reflection peaks could be determined. The
chirality is then 4p divided by the pitch. The results of
chirality measurements in both the cholesteric and isotropic
phases are displayed in Fig. 7. Since the transition tempera-
ture as measured in the light-scattering apparatus and spec-
trophotometer differed slightly, the values ofTc used for the
isotropic and cholesteric phase data in Fig. 7 differ by 0.4 K.

IV. DISCUSSION

The difficulties inherent in measuring the bare correlation
length are clear from the few reports that discuss such mea-

FIG. 3. Correlation length vs. temperature in the isotropic phase
of 5CB. The bare correlation length resulting from the fit to Eq.s8d
is 0.40±0.03 nm.

FIG. 4. Scattering intensity normalized to the scattering at high
temperaturessee textd as a function of scattering wave vector for
CE6/CE6R. The line shows the fit to Eq.s13d, which results in a
determination of the chirality ofq0=−30.7±0.4mm−1.
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surements. The most successful prior investigations used the
nonpolar Schiff-based liquid-crystal p-methoxybenzilidine-
p-butylanilinesMBBA d. One report failed to observe the the-

oretical temperature dependencef1g, probably due to an ex-
perimental artifact. Two successful measurements on MBBA
gave conflicting results: 0.68±0.01 nm f2g and
0.55±0.02 nmf3g. The need to remove seemingly insignifi-
cant experimental artifacts became very clear in the study of
5CB reported here. In samples for which the data suggested
the presence of an artifact, usually by an extremely small
angular dependence of the scattered intensity at high tem-
peratures, analysis of the data was problematic. Whether or
not steps were taken to correct for the experimental artifact,
the value of the bare correlation length ranged from 0.25 to
0.62 nm. The value reported here, 0.40±0.03 nm, represents
the measurement with the greatest indication of complete
artifact elimination and therefore contains no correction step
in the analysis.

This result is important for two reasons. First, it is an
additional measurement of the bare correlation length in the
isotropic phase of a liquid crystal, thus adding precious in-
formation to the small number of prior measurements. Sec-
ond, this is a measurement of the bare correlation length in a
polar system that has a strong tendency to form dimers.
Therefore, the fact that the value of the bare correlation
length is smaller than in MBBA could very well be a reflec-
tion of the smaller amount of local orientational order
present in systems of molecules with so small a length-to-
breadth ratio that they probably would not form a liquid-
crystal phase if they did not have a strong tendency to dimer-
ize.

The correlation length measurements that result from the
analysis of the CE6 data are roughly three times larger than
for 5CB but decrease with increasing temperature at a rate
not unlike what is found for 5CB. This is demonstrated by

FIG. 5. Chirality sad and correlation lengthsbd for the isotropic
phase of CE6/CE6R.

FIG. 6. Wavelength dependence of measured absorption due to
selective reflection at one temperature in the cholesteric phase of
CE6/CE6R. The small oscillations are due to multiple reflections in
the sample chamber, and the noise at the highest wavelengths is due
to the decreasing sensitivity of the detector.

FIG. 7. Chirality as a function of temperature in both the cho-
lesteric and isotropic phases of CE6/CE6R as a function of reduced
temperature,sT−Tcd /Tc sclosed circlesd. Data on the specific vol-
ume of 4OAB fromf19g has been graphed for comparisonsopen
circlesd. The three solid lines are fits of the modified Landau–de
Gennes theorysdifferent q0 vs S dependencesd to the data as de-
scribed in the text. The dashed curve is a fit of a general critical
point theory to the data as also described in the text.
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the fit to Eq.s8d shown in Fig. 5, where a significantly larger
bare correlation length results and whereT* is farther below
the first measurement in the isotropic phase. This is consis-
tent with the measurements of the correlation length in a
mixture of cholesteryl olyel carbonate and cholesteryl chlo-
ride near the Blue Phase III—isotropic phase critical point in
which the correlation length is about 18 nm, 1.4 K above the
critical point, and increases to 37 nm very close to the criti-
cal pointf5g. Since the analysis of the CE6 data requires that
the intensity measurements be normalized to data taken at a
very high temperature, these results may be slightly less re-
liable than the 5CB results. But this does not affect the find-
ing that the correlation length in this chiral system is signifi-
cantly longer than has been measured in nonchiral systems,
in agreement with the one prior result.

Figure 7 illustrates several results, all graphed with the
independent variable being reduced temperature,sT−Tcd /Tc,
whereTc is the transition temperature to the isotropic phase.
First, a discontinuity in the chirality at the cholesteric-
isotropic transition of 4.0±0.6mm or 15±2 % is present.
Second, specific volumesinverse of the densityd data from
the nematic liquid-crystal dibutyloxyazoxybenzenes4OABd,
which has about the same overall molecular shape as CE6,
are graphed with the chirality data to show the similarity
f19g. Note that the data appear to be quite similar when plot-
ted in this fashion but that the discontinuity in the specific
volume is much smallersabout 0.35%d. Third, Fig. 7 also
shows that the Landau–de Gennes theory, modified for the
cholesteric phase, can be fit to the chirality data in the cho-
lesteric phase. The fitting procedure used is described fully in
Ref. f17g, but amounts to assuming that the order-parameter
behavior of CE6 is typical, leaving only two parameters to be
determined, one of which is the chirality in the isotropic
phase. Although the theory describes the data well in the
cholesteric phase regardless of how the chirality depends on
the order parameter, note that differentq0 versusS depen-
dences predict different discontinuities in chirality at the
transition. None of them, however, predicts the observed
temperature dependence of the chirality in the isotropic
phase.

Finally, as can be seen from Fig. 7, the critical point
theory fits the data in both the cholesteric and isotropic
phases reasonably well, although rather than a discontinuity
of 15% at the transition, the chirality changes extremely rap-
idly near the transition with a discontinuity of only 7%. In
this fitting procedure, the same dependence of the ordering
field on temperature and chiral fraction observed in a very
similar cholesteric liquid crystalsCE4d is assumedf14g, so
only three parameters are left to vary, one of which specifies
how far below the critical chiral fraction the system is. The
other two parameters describe how much the chirality de-
pends on the ordering and nonordering fields. The result of
the fitting procedure is that the chirality depends on the or-
dering field much more than the nonordering field, but that
the system is very close to the critical chiral fractionsthe

fitting procedure yields 36.4% ±0.9%d. Although the data do
not rule out a chirality dependence of this kind, the fact that
the orientational order parameter changes significantly at the
transition and that a coexistence region of about 0.1 K is
present, make it very unlikely that such a strong temperature
dependence so close to the transition actually occurs in this
system. In addition, since it is clear, experimentally, that
100% chiral CE6 is still not chiral enough to display a criti-
cal point f20g, this result points out that even though the
theory agrees with the data on either side of the transition, it
is not the explanation for the behavior of chirality across the
transition. So perhaps the most interesting question raised by
this investigation is why the chirality at this very discontinu-
ous transition possesses a relatively small discontinuity and
in some ways behavesas if the transition is close to a critical
point. The answer may be that chirality, like specific volume
but probably less so, is more dependent on short-range rather
than long-range interactions, and is therefore affected only
weakly by the presence of long-range orientational order.
Theoretical work is certainly warranted.

V. CONCLUSIONS

Experimental measurements of correlation lengths and
chirality in the isotropic phase are exceedingly difficult, but
they are important parameters for understanding the physics
associated with the transition to the liquid-crystal phase. Cor-
relation lengths in the isotropic phase of nematic liquid crys-
tals have been measured just a few times, always on the same
type of compound and with some inconsistency. Even less is
known about the chirality of the fluctuations in the isotropic
phase above the transition to a cholesteric phase, yet the
theories of these fluctuations require knowledge of the
chirality. Reported here are correlation lengths for both types
of liquid crystals and the chirality of the fluctuations in the
isotropic phase for one cholesteric liquid crystal. These re-
sults provide useful information:sid the correlation lengths in
a small length-to-breadth ratio polar system are smaller than
in a larger length-to-breadth ratio nonpolar system, andsii d
the discontinuity in the chirality across the cholesteric-
isotropic phase transition is relatively small and the chirality
in the isotropic phase is temperature dependent. Thus the
chirality in some ways resembles the behavior of specific
volume at a transition to the isotropic phase or a system just
below a critical point more than the prediction of modified
Landau–de Gennes theory.
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